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Two defining electromagnetic properties of  a superconductor: 

1. Zero resistivity            2. Perfect diamagnetism

Kamerlingh Onnes, (1911)

Persistent current flows in 

superconductors for years 



Electron tomography

Tonomura et al, PRL66, 2519 (1993)
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Magnetic (Abrikosov) vortices in a type II superconductor
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Vortex line repel each other Vortex line repel each other 

forming highly ordered forming highly ordered 

structures like flux line structures like flux line 

lattice (as seen by STM and lattice (as seen by STM and 

neutron scatteringneutron scattering)

Pan et al PRL (2002)

Park et al,PRL (2000)
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Field driven flux motion 

probed by STM on NbSe2

Flux flowFlux flow

FluxonsFluxons are light and move. The motion is generally a friction are light and move. The motion is generally a friction 
dominated one with energy dissipated in the vortex cores. Electric dominated one with energy dissipated in the vortex cores. Electric 
current “induces” the flux flow, causing voltage via phase slips.current “induces” the flux flow, causing voltage via phase slips.

The first defining property, zero 

resistivity, is also lost in 

magnetic field above Hc1

This however is not the end of the storyThis however is not the end of the story
Troyanovsky et al, Nature  (04)
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Pinning of vortices

STM of both 

the pinning 

centers (top) 

and the 

vortices 

(bottom)

Schuler et al, PRL79, 1930 (1996) 

Intrinsic random disorderArtificial

Recently techniques were developed to 

effectively pin the vortices on the scale of 

coherence length. The most effective 

pinning is achieved at the matching field –

one vortex per pin. Fortunately this case is 

also the simplest to treat theoretically.

Pan et al

PRL 85, 1536 (2000)



A pinning center acts as an attractive force on the vortex since 

the energy loss due to  the necessity to create a vortex core is 

reduced.

A single vortex description of the pinned state

Jc

FL

fpin

 V r

When the pinning force is able to 

oppose the Lorentz force, the flux 

motion stops, electric field cannot 

penetrate the material and the 

superconductivity is restored.

Schuler, PRL79, 1930 (1996) 



London appr. 
for infinitely  

thin lines

For                 vortices are well 

separated and have very thin cores

For                 vortex cores almost overlap. 

Instead of lines one just sees array of 

superconducting “islands”

The Landau level 
description for 

constant B
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Two complementary theoretical approaches to the mixed stateTwo complementary theoretical approaches to the mixed state

1cH H

2cH H



B

Homogeneity of magnetic induction B

for is a result of overlap of 

magnetic fields of roughly                 

magnetic fields of individual vortices

Magnetization (although 

inhomogeneous) is small (            ) and 

one replaces B(r)=H

Homogeneity of magnetic fieldHomogeneity of magnetic field
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Outline

1. The Ginzburg – Landau description of the charged BEC 

in magnetic field. 

2. Basic mathematical tool – perturbation theory around a 

bifurcation point. Abrikosov lattice as an example.

3. How current carrying states look like in the Landau level 

basis?

4. Calculation of the critical (depining) current.

5. Solutions of the time dependent GL equations. Electric 

field and dissipation in the moving vortex matter. 

6. Excitations in the pinned vortex core. How to increase the 

energy gap?
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Disintegration of the magnetic flux at the normal line into Disintegration of the magnetic flux at the normal line into 

vortices at type II SCvortices at type II SC

The vortex dynamics then can be simulated

I. Shapiro, B. Shapiro (2006) 



GL energy (using    as a unit of length,                       and neglecting 

pinning) is
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Is a nonnegative definite operator – QM  Hamiltonian of a 
particle in homogeneous magnetic field:
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Is the distance from the bifurcation point in which the nonzero 
solution disappears. 

Below this point it is reasonable to assume that order parameter 
is small. The basic idea is to guess the critical exponent and 
expand the rest in 
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Lascher, PR A140, 523 (65)

B.R., PR B60, 4268  (99)

B.R., Li, Rev. Mod. Phys. 82 , 109 (2010)
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The leading (       ) order equation gives the LLL restriction:
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The normalization is determined by higher order



The next to leading order,       , the equation is:
3/ 2
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haTherefore the perturbation theory in is useful up to surprisingly         

LLL is by far the leading contribution above this line. 

low fields and temperatures, roughly above the line  
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Currents in an equilibrium state (when pinning is absent) are 

purely diamagnetic and overall current of the equilibrium state is 

zero in accordance with the generalized Bloch theorem. 

   tr diamagj r j j r 

Pinning creates a stationary nonequilibrium state supporting 

transport current.

Bohm, PR141  (1959)

Before considering a more complicated problem of pinning of the 

vortex lattice by a stress created by the current (via Lorentz 

force) one would like to imagine how the current carrying state 

looks like in the Landau level basis.  



The order parameter configuration cannot 

belong to LLL, since for a general LLL 

configuration
 2

i ij jJ   

Affleck, Brezin, NPB257, 451 (1985)

A small 1LL correction like 

Produces an appreciable net current of one percent (the 

unit of current is the depairing current of  superconductor)

When all the vortices are pinned there is current without dissipation. 

0 10.02   

LLL is not enoughLLL is not enough



The force balance equation for a periodic pinning potentialThe force balance equation for a periodic pinning potential
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Qualitatively the best pinning is achieved when the gradient of the 

pinning potential is proportional to the Abrikosov vortex 

superfluid density
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Multiplying a covariant derivative of GL equation 

  ** 21
0

2
1i i i it V DDD V    

 
      


 


 

2 *1

2
iD D 

 21
1 0;

2
D t V    


        

By        one obtains 

2
* 21 1

0
2 2

i i i iD D DD V    
 

      
 

Using the commutator                                    and integrating over 

the sample, one gets: 



2, i ij jD D i bD   



With full derivatives dropped due to periodicity, leads to
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This relation is making a calculation of the persistent 

supercurrent in a lattice pinned by an arbitrary periodic potential 

at matching field very simple. 



One can systematically expand solutions of GL eqs. around the 
“new” bifurcation point for the inhomogeneous case to first 
order in pinning potential

We consider a periodic hexagonally 
symmetric potential. In this case a conflict 
between interactions of vortices and pinning 
potential is avoided and quasimomentum      
is conserved
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Current vs displacement of vortices

It is important to note that in addition to the 
displacement, the shape of vortices changes 
in the current carrying states: shape degrees 
of freedom that can be used and manipulated

Transition to the flux flow state as current is 

increased passed      is always at same 

quasimomentum (same place within the unit 

cell)
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Beyond certain pinning strength the perturbation theory breaks 

down. It is quite enough to consider a variational method in which 

the configuration is restricted two the lowest two LL.

Beyond perturbation theory in potential

0 0 1 1k kc c   

Above the critical current Lorentz force becomes larger than the 

pinning force, vortices start moving and electric field enters the 

superconductor. Since electric field is inhomogeneous, Maxwell 

equations should be solved. Simplicity is lost. 

Beyond certain potential the 

critical current stops rising. 

B.R., B. Shapiro, I. Shapiro, PRB81, 

064507 (2010)



Maxwell –GL equations simulation

It turns out that at the depinning current large inhomogeneous 

electric fields are generated. 

J=0.007

J=0.0075

J=0.01

J   =0.0073
c



When current significantly exceeds critical, electric field is present electric field is present 
and, due to superposition between vortices, is also homogeneous in and, due to superposition between vortices, is also homogeneous in 
sufficiently dense vortex matter sufficiently dense vortex matter 

Troyanovsky et al, Nature  (04)

Hu, Thompson, PRL27, 1352  (75)
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Bifurcation perturbation theory in constant electric fieldBifurcation perturbation theory in constant electric field
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The adaptations to the method are the following. One first looks 
for eigenfunctions of the linear part of the equation

Np Np NpL     

   
2( ) 1/ 2e / exp /

2

i kx t

Np N

b
H b y k b iv y k b iv

   
         

 

The right eigenfunctions are: 

 Np Nb i vk    

Note the “wave” exponential despite absence of Galileo 

invariance (due to microscopic disorder tied to the rest frame)
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The moving lattice solution

The lattice is no longer hexagonal, but is slightly 
deformed. 

In the presence of periodic pinning the 
corrections and the AC conductivity can be 
obtained.

Maniv, B.R., Shapiro, PRB80, 134512  (2009)



DeGennes found that normal quasiparticles in the vortex core 

have a spectrum

Vortex core excitations

2

FE
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However solving Bogoliubov – DeGennes equations with a 

dielectric core, one finds that the low angular momentum 

excitations are pushed up: very hard to dissipate energy.



Conclusions

1. Bifircation point perturbation theory is a convenient    

systematic universal method which can be applied to vortex 

matter in type II superconductors when electromagnetic 

field is essentially homogeneous.

2. It was applied to describe quantitatively nonequilibrium 

supercurrent carrying states supported by a periodic array 

of pins  of arbitrary shape and the flux flow at sufficiently 

large flux velocities. 

3.  Pins on the scale of coherence length can manipulate the 

distribution of the order parameter. The critical current is 

maximized when gradient of potential is proportional to the 

Abrikosov lattice superfluid density.  Core excitations have 

large energy gap.

B.R., Li, Rev. Mod. Phys. 82 , 109 (2010)


